ENEM 2ºAplicação 2023 – Questão 170

Matemática
Analisando as vendas de uma empresa, o gerente concluiu que o montante diário arrecadado, em milhar de real, poderia ser calculado pela expressão V(x) =x24-10x+105, em que os valores de x representam os dias do mês, variando de 1 a 30.
Um dos fatores para avaliar o desempenho mensal da empresa é verificar qual é o menor montante diário V0 arrecadado ao longo do mês e classificar o desempenho conforme as categorias apresentadas a seguir, em que as quantidades estão expressas em milhar de real.
• Ótimo: V0 ≥ 24
• Bom: 20 ≤ V0 < 24
• Normal: 10 ≤ V0 < 20
• Ruim: 4 ≤ V0 < 10
• Péssimo: V0 < 4
No caso analisado, qual seria a classificação do desempenho da empresa?
a) Ótimo.
b) Bom.
c) Normal.
d) Ruim.
e) Péssimo.
Esta questão recebeu 138 comentários

Veja outras questões semelhantes:

FGV Economia 2011 – Questão 4
Em um mesmo plano estão contidos um quadrado de 9 cm de lado e um círculo de 6 cm de raio, com centro em um dos vértices do quadrado. A área da região do quadrado não interceptada pelo círculo, em cm2, é igual a a) 9 (9 – π). b) 9 (4π – 9). c) 9 (9 – 2π). d) 3 (9 – 2π). e) 6 (3π – 9).
ANHEMBI 2020 – Questão 12
Em um sistema de coordenadas cartesianas ortogonais, uma circunferência de centro C, situado no eixo das abscissas, tangencia a origem O do sistema. Sabendo-se que o ponto B(0, 4) é um dos vértices do triângulo BOC, a área do setor circular determinado pelo ângulo de 30º, destacado na figura, é a) 3π b) 33π c) 4π d) 43π e) 4+3π
ENEM PPL - Natureza e Matemática 2020 – Questão 143
Um determinado campeonato de futebol, composto por 20 times, é disputado no sistema de pontos corridos. Nesse sistema, cada time joga contra todos os demais times em dois turnos, isto é, cada time joga duas partidas com cada um dos outros times, sendo que cada jogo pode terminar empatado ou haver um vencedor. Sabendo-se que, nesse campeonato, ocorreram 126 empates, o número de jogos em que houve ganhador é igual a a) 64. b) 74. c) 254. d) 274. e) 634.
UNESP 2016 – Questão 88
Renata pretende decorar parte de uma parede quadrada ABCD com dois tipos de papel de parede, um com linhas diagonais e outro com riscos horizontais. O projeto prevê que a parede seja dividida em um quadrado central, de lado x, e quatro retângulos laterais, conforme mostra a figura. Se o total da área decorada com cada um dos dois tipos de papel é a mesma, então x, em metros, é igual a: a) 1+23 b) 2+23 c) 2+3 d) 1+3 e) 4+3
FGV 2018 – Questão 5
Dados os pontos A(5,2) e B(–1,4) do plano cartesiano, seu ponto médio M pertence à reta de equação 4x + my – 17 = 0. A distância da origem a esta reta é: a) 1,6 b) 2,9 c) 5,5 d) 4,2 e) 3,4