Base dudow 079 2000 – Questão 15

Matemática / Tipos de Funções / Função Inversa
A função inversa da função bijetora
f:ΙR - {-4} → ΙR - {2} definida por f(x) = 2x-3x+4 é:
 
a) f -1(x) = x+42x+3
 
b) f -1(x) = x-42x-3
 
c) f -1(x) = 4x+32-x
 
d) f -1(x) = 4x+3x-2
 
e) f -1(x) = 4x+3x+2

Veja outras questões semelhantes:

Base dudow 2000 – Questão 60
Se z={2 [cos(π/4) + i sen(π/4) ] }, então o conjugado de z2 é igual a a) 2-i2 b) -2-i2 c) -2+i2 d) 4 e) -4i
UNIFESP s/port e inglês 2006 – Questão 7
Os números complexos z1, z2= 2i e z3 = a3 + ai, onde a é um número real positivo, representam no plano complexo vértices de um triângulo equilátero. Dado que |z2 – z1| = 2, o valor de a é: a) 2. b) 1. c) 3 . d) 32. e) 12.
Base dudow 2000 – Questão 58
Seja a função f : A → R e f(x) = 12x+1 + 2+3x-2x2, em que A ⊂ R. Então o domínio da função f é: a) R - {-1/2} b) [-4, -1/2[ ∪ ]-1/2, 1] c) R - {-1/2, 2} d) ]-1/2, 2] e) vazio
Base dudow 2000 – Questão 10
Uma lotação possui três bancos para passageiros, cada um com três lugares, e deve transportar os três membros da família Sousa, o casal Lúcia e Mauro e mais quatro pessoas. Além disso, 1. A família Sousa quer ocupar um mesmo banco; 2. Lúcia e Mauro querem sentar-se lado a lado. Nessas condições, o número de maneiras distintas de dispor os nove passageiros na lotação é igual a: a) 928 b) 1152 c) 1828 d) 2412 e) 3456
UNIFESP s/ port e inglês 2008 – Questão 11
Dadas as retas r: 5x – 12y = 42, s: 5x + 16y = 56 e t: 5x + 20y = m, o valor de m para que as três retas sejam concorrentes num mesmo ponto é a) 14. b) 28. c) 36. d) 48. e) 58.