ENEM Natureza e Matematica 2022 – Questão 141

Matemática
Em um jogo de bingo, as cartelas contêm 16 quadrículas dispostas em linhas e colunas. Cada quadrícula tem impresso um número, dentre os inteiros de 1 a 50, sem repetição de número. Na primeira rodada, um número é sorteado, aleatoriamente, dentre os 50 possíveis. Em todas as rodadas, o número sorteado é descartado e não participa dos sorteios das rodadas seguintes. Caso o jogador tenha em sua cartela o número sorteado, ele o assinala na cartela. Ganha o jogador que primeiro conseguir preencher quatro quadrículas que formam uma linha, uma coluna ou uma diagonal, conforme os tipos de situações ilustradas na Figura 1.

 

 
O jogo inicia e, nas quatro primeiras rodadas, foram sorteados os seguintes números: 03, 27, 07 e 48. Ao final da quarta rodada, somente Pedro possuía uma cartela que continha esses quatro números sorteados, sendo que todos os demais jogadores conseguiram assinalar, no máximo, um desses números em suas cartelas. Observe na Figura 2 o cartão de Pedro após as quatro primeiras rodadas.
 

 
A probabilidade de Pedro ganhar o jogo em uma das duas próximas rodadas é

a) 1 over 46 plus 1 over 45

b) 1 over 46 plus space fraction numerator 2 over denominator 46 x 45 end fraction

c) 1 over 46 plus fraction numerator 8 over denominator 46 x 45 end fraction

d) 1 over 46 plus fraction numerator 43 over denominator 46 x 45 end fraction

e) 1 over 46 plus fraction numerator 49 over denominator 46 space x 45 end fraction
 
Esta questão recebeu 194 comentários

Veja outras questões semelhantes:

FUVEST 2013 – Questão 29
Quando se divide o Produto Interno Bruto (PIB) de um país pela sua população, obtém-se a renda per capita desse país. Suponha que a população de um país cresça à taxa constante de 2% ao ano. Para que sua renda per capita dobre em 20 anos, o PIB deve crescer anualmente à taxa constante de, aproximadamente, Dado: a) 4,2% b) 5,6% c) 6,4% d) 7,5% e) 8,9%
FUVEST 2018 – Questão 32
Considere o polinômio P(x) = xn+ an – 1xn–1+ ... + a1x + a0, em que a0, ..., an–1 . Sabe-se que as suas n raízes estão sobre a circunferência unitária e que a0< 0. O produto das n raízes de P(x), para qualquer inteiro n≥1, é: a) – 1 b) in c) in+1 d) (–1)n e) (–1)n+1
FUVEST 2014 – Questão 45
Três das arestas de um cubo, com um vértice em comum, são também arestas de um tetraedro. A razão entre o volume do tetraedro e o volume do cubo é a) b) c) d) e)
UNIFESP 2005 – Questão 13
Imagine uma parede vertical com uma janela retangular, de lados a e b, conforme a figura, onde a é paralelo ao piso plano e horizontal. Suponhamos que a luz solar incida perpendicularmente ao lado a, com inclinação de 60° em relação à parede. Se A1 e A2 representam, respectivamente, as áreas da janela e de sua imagem projetada no piso, a razão A1A2 vale: a) 323 b) 3 c) 32 d) 33 e) 12
UNIFESP 2005 – Questão 7
Um engradado, como o da figura, tem capacidade para 25 garrafas. Se, de forma aleatória, forem colocadas 5 garrafas no engradado, a probabilidade de que quaisquer duas delas não recaiam numa mesma fila horizontal, nem numa mesma fila vertical, é: a) 5!25!   b) 5!5!25!   c) 5!20!25!   d) 5!5!20!25!   e) 5!5!25!20!